to form a distorted trigonal bipyramid around the central Bi atom. However, from the two additional short intramolecular $\mathrm{Bi}-\mathrm{O}(2)$ and $\mathrm{Bi}-\mathrm{O}(5)$ distances [mean 2.806 (4) \AA; sum of the van der Waals radii presumably $>3 \cdot 60 \AA$], the polyhedron around Bi appears to be a distorted pentagonal bipyramid, in which the four O (carboxylate) and $\mathrm{C}(21)$ atoms are in the equatorial and $\mathrm{C}(11)$ and $\mathrm{C}(31)$ are in the apical positions. This interpretation gains justification by considering the opening of the angle $\mathrm{C}(11)-\mathrm{Bi}(1)-$ $\mathrm{C}(31)$ to 148.23 (2) ${ }^{\circ}$ to allow the positioning of $\mathrm{O}(2)$ and $O(5)$. A value of 120° would be expected in a regular trigonal bipyramid. The structure is very similar to that found in trimethylbis[2-thenoato($1-$)]antimony (Preut, Domagala \& Huber, 1987) and triphenyl-bis[2-thenoato(1-)]antimony (Domagala, Huber \& Preut, unpublished).

The distances $\mathrm{Bi}(1)-\mathrm{O}(1)$ and $\mathrm{Bi}(1)-\mathrm{O}(4)$ are appreciably greater than the value of $2.075 \AA$, which was estimated for a $\mathrm{Bi}-\mathrm{O}$ single bond (March \& Ferguson, 1975). In $\mathrm{Ph}_{3} \mathrm{BiClOx} \quad(\mathrm{Ox}=8$-quinolinolate), a $\mathrm{Bi}-\mathrm{O}$ bond length of $2 \cdot 175 \AA$ was determined and the bond was assumed to be covalent (Barton, Charpiot, Dau, Motherwell, Pascard \& Pichon, 1984). It therefore may be speculated that the bond between Bi and the carboxylate ligand has an appreciable ionic character. The bond distances and angles of the furan ring are essentially the same as found in solid 2 -furancarboxylic acid (Hudson, 1962).

Coordination of $\mathrm{O}(f u r a n)$ to Bi can be excluded. Intermolecular distances smaller than the sum of the van der Waals radii do not exist.

Financial assistance by Fonds der Chemischen Industrie is gratefully acknowledged.

References

Barton, D. H. R., Charpiot, B., Dau, E. T. H., Motherwell, W. B., Pascard, C. \& Pichon, C. (1984). Helv. Chim. Acta, 67, 586-599.
Frenz, B. A. (1981). Enraf-Nonius Structure Determinatior Package. 4th ed. Version 18. Enraf-Nonius, Delft, The Netherlands.
Hudson, P. (1962). Acta Cryst. 15, 919-920.
International Tables for X-ray Crystallography (1974). Vol. IV, Tables $2.2 B$ and 2.3.1. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
March, F. C. \& Ferguson, E. (1975). J. Chem. Soc. Dalton Trans. pp. 1291-1294.
Preut, H., Domagala, M. \& Huber, F. (1987). Acta Cryst. C43, 416-418.
WaAL, B. W. van de (1976). POP1. Plot of Packing Program. Twente Univ. of Technology, The Netherlands.

Acta Cryst. (1988). C44, 832-834

Structure of catena-Poly[tri- μ-cyano-(ammine)(2-amino-3-methylpyridine)cadmium-μ-cyano-nickel]

By T. Hökelek and D. Ülkü
Hacettepe University, Department of Physics, Beytepe-Ankara, Turkey

(Received 9 April 1987; accepted 4 February 1988)

Abstract

CdNi}(\mathrm{CN})_{4}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{NH}_{3}\right)\right], M_{r}=400 \cdot 1\), orthorhombic, Pna $2_{1}, a=13.535$ (1), $b=13.607$ (1), $c=7.645$ (1) $\AA, V=1407.99 \AA^{3}, Z=4, D_{m}=1.875$, $D_{x}=1.888 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71069 \AA, \mu(\mathrm{Mo})=$ $26.76 \mathrm{~cm}^{-1}, F(000)=784, T=293 \mathrm{~K}, R=0.033$ for 1632 observed reflections. The structure consists of corrugated polymeric networks made up of tetracyanonickelate ions coordinated to Cd . The 2 -amino-3methylpyridine and ammonia molecules bound to Cd in trans positions are located on both sides of the network.

Introduction. This structure determination is part of a series of studies of Hofmann-type pyridine complexes, $M\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4}$, where M is a transition metal. Our previous X-ray investigation of a single crystal of $\mathrm{Cd}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ (Ülkü, 1975) and studies of powder samples of the analogous compounds with $M=\mathrm{Mn}, \mathrm{Zn}, \mathrm{Ni}, \mathrm{Co}, \mathrm{Fe}$ and Cu (Morehouse, Aytaç \& Ülkü, 1977) showed its complex nature. In the search for new Hofmann pyridine complexes, compounds with substituted pyridine derivatives were prepared. The first example of a Hofmann-type complex with a pyridine © 1988 International Union of Crystallography
derivative (4-chloropyridine), instead of pyridine itself, has been reported recently (Büyükgüngör \& Ülkü, 1987). A structure determination of the title compound containing 2 -amino- 3 -methylpyridine was undertaken to permit a comparison of its structure with that of previously reported analogues.

Experimental. One mole per cent $\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$.$2 \mathrm{H}_{2} \mathrm{O}$ was dissolved in 50 ml ammonia and mixed with an aqueous solution of $0.01 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{Ni}(\mathrm{CN})_{4}$. This solution was kept under a 2 -amino-3-methylpyridine atmosphere. In about a week yellow prismatic crystals were obtained. Experimental data, methods used to solve the structure and other related parameters and procedures are given in Table 1. Difference Fourier calculations did not show clearly the electron density for H atoms. Therefore, H atoms were geometrically positioned $1.0 \AA$ from C or N with coordinates and isotropic temperature coefficients ($U=0.05 \AA^{2}$) kept fixed in the refinement process.

Discussion. Final coordinates and equivalent isotropic thermal parameters are given in Table 2.* Fig. 1 shows the structure as viewed down c. It consists of corrugated polymeric networks made up of squareplanar tetracyanonickelate ions coordinated to Cd . The 2-amino-3-methylpyridine and the ammonia molecules

* Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44753 (39 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. Crystal structure as viewed down the c axis.
are bonded to Cd in trans positions on both sides of the network. The ligands of one network fit into the cavities of the other, so that relatively good close packing is obtained. The coordination around Cd (Fig. 2) is a

Table 1. Experimental details

Method of measuring D_{m}
Crystal shape and size (mm)
Diffractometer used and datacollection technique
Number and θ range of reflections used for measuring lattice parameters
Absorption correction applied
Maximum value of $(\sin \theta) / \lambda$ reached in intensity measurements
Range of h, k and l
Standard reflections and their intensity variation throughout experiment
Number of unique reflections
Number of unobserved reflections
Criterion for recognizing unobserved reflections Method used to solve structure Use of F or F^{2} magnitudes in least-squares refinement
Parameters refined

Values of $R, w R$
Method used to calculate w
Final residual electron densities (\AA^{-3}) for max. peak
Max. ($4 / \sigma$)
Source of atomic scattering factors and $f^{\prime}, f^{\prime \prime}$ values
Computer programs used

Flotation (bromoform, CCl_{4})
Prismatic, $0.5 \times 0.5 \times 1.0$
$\omega-2 \theta$ scan, CAD-4 four-circle diffractometer
50 reflections with $15<2 \theta<45^{\circ}$

Analytical absorption correction $0.648 \AA^{-1}$
$0 \leq h \leq 17,0 \leq k \leq 17,0 \leq 1 \leq 8$
$\overline{6} 0 \overline{5}, \overline{6} 42, \overline{3} 72$; variation (\%) $2,1,1$ respectively

1713

81
$I<2 \cdot 5 \sigma(I)$
Direct methods
$\stackrel{\text { Dir }}{F}$
(Coordinates and anisotropic temperature factors of nonhydrogen atoms) 171
$0.033,0.029, S$ not calculated
$w=1 / \sigma^{2}(F)$
$+0.53$
$+0.876$
International Tables for X-ray Crystallography (1974)
Max-Planck Institut Mülheim Crystal Package, DATAP (Coppens, Leiserowitz \& Rabinovich, 1965); SHELXS84 (Sheldrick, 1984); ORTEP
(Johnson, 1976)

Table 2. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$ with e.s.d.'s in parentheses

	x	y	z	$U_{\text {eq }}$
Ni	2634	2398	3886 (41)	17.8
Cd	136	1603	8912 (41)	16.0
N1	1382 (14)	1494 (10)	6701 (45)	38.2
N2	-1047 (12)	1740 (10)	6752 (43)	27.4
N3	1340 (12)	1477 (9)	11117 (43)	$24 \cdot 6$
N4	-1116(13)	1692 (11)	11159 (45)	$34 \cdot 3$
N5	-12 (3)	-93 (4)	8912 (50)	31.3
N6	392 (4)	3322 (3)	8994 (50)	27.4
N7	-1255 (5)	3777 (4)	8829 (50)	48.6
Cl	1845 (13)	1824 (12)	5629 (46)	25.2
C2	3400 (12)	2935 (11)	5620 (46)	21.6
C3	1868 (11)	1799 (13)	2169 (45)	21.8
C4	3446 (12)	2999 (12)	2158 (46)	23.0
C5	1347 (5)	3589 (5)	8816 (48)	$34 \cdot 3$
C6	1667 (6)	4548 (5)	8630 (41)	34.4
C7	959 (7)	5261 (5)	8621 (44)	$46 \cdot 0$
C8	-40 (6)	5043 (6)	9075 (65)	43.5
C9	-302 (4)	4046 (4)	8925 (51)	31.5
C10	-839 (8)	5817 (5)	8773 (58)	73.1

Table 3. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Ni}-\mathrm{Cl}$	1.877 (16)	N2-C2	1.205 (25)
$\mathrm{Ni}-\mathrm{C} 2$	1.835 (15)	N3-C3	1.162 (18)
$\mathrm{Ni}-\mathrm{C} 3$	1.860 (14)	N4-C4	1.077 (25)
$\mathrm{Ni}-\mathrm{C} 4$	1.903 (16)	N6-C5	1.350 (9)
$\mathrm{Cd}-\mathrm{N} 1$	2.392 (16)	N6-C9	1.362 (7)
$\mathrm{Cd}-\mathrm{N} 2$	$2 \cdot 308$ (13)	N7-C9	1.343 (8)
Cd-N3	2.351 (14)	C5-C6	1.383 (9)
Cd-N4	2.417 (17)	C6-C7	1.363 (12)
Cd-N5	$2 \cdot 317$ (6)	C7-C8	1.427 (15)
Cd-N6	$2 \cdot 365$ (4)	C8-C9	1.407 (10)
N1-Cl	$1 \cdot 125$ (20)	C8-C10	1.527 (14)
C5-HC5	1.007 (19)	C6-HC6	1.046 (15)
N5-HN5A	1.202 (36)	N5-HN5B	1.009 (5)
N5-HN5C	0.871 (19)	N7-HN7B	0.838 (16)
N7-HN7C	1.005 (6)	C10-H10A	0.813 (29)
C10-H10B	1.282 (39)	C10-H10C	1.003 (18)
C7-HC7	1.036 (9)		
$\mathrm{C} 1-\mathrm{Ni}-\mathrm{C} 2$	88.5 (8)	$\mathrm{Cl}-\mathrm{Nl}-\mathrm{Cd}$	151.9 (14)
$\mathrm{C} 1-\mathrm{Ni}-\mathrm{C} 3$	90.1 (2)	N7-C9-N6	117.9 (6)
$\mathrm{C} 1-\mathrm{Ni}-\mathrm{C} 4$	178.7 (7)	C3-N3-Cd	153.5 (12)
$\mathrm{C} 2-\mathrm{Ni}-\mathrm{C} 3$	177.5 (8)	N4-Cd-N6	92.0 (6)
$\mathrm{C} 2-\mathrm{Ni}-\mathrm{C} 4$	90.2 (2)	C5-N6-Cd	113.8 (4)
$\mathrm{C} 3-\mathrm{Ni}-\mathrm{C} 4$	91.2 (7)	C9-N6-Cd	127.8 (4)
$\mathrm{N} 1-\mathrm{Cd}-\mathrm{N} 2$	89.3 (7)	C9-N6-C5	117.5 (6)
$\mathrm{N} 1-\mathrm{Cd}-\mathrm{N} 3$	90.8 (2)	N1-C1-Ni	178.5 (15)
N1-Cd-N4	179.2 (5)	C6-C5-N6	124.3 (6)
N1-Cd-N5	89.9 (5)	N3-C3-Ni	175.2 (14)
N1-Cd-N6	88.7 (6)	N5-Cd-N6	176.3 (4)
N2-Cd-N3	179.6 (3)	C7-C6-C5	116.9 (7)
N2-Cd-N4	91.0 (2)	C8-C7-C6	121.0 (8)
N2-Cd-N5	91.1 (5)	C10-C8-C9	118.3 (9)
N2-Cd-N6	$92 \cdot 3$ (5)	C10-C8-C7	119.4 (13)
N3-Cd-N4	88.9 (7)	C9-C8-C7	114.9 (10)
N3-Cd-N5	89.3 (5)	C8-C9-N7	$120 \cdot 6$ (6)
N3-Cd-N6	87.3 (5)	C8-C9-N6	121.3 (6)
N4-Cd-N5	89.3 (5)	HC5-C5-N6	112.7 (14)
HC5-C5-C6	115.3 (9)	HC6-C6-C5	111.1 (8)
HC6-C6-C7	127.7 (9)	HC7-C7-C6	118.0 (9)
HC7-C7-C8	$120 \cdot 6$ (9)	HN7B-N7-C9	123.5 (14)
HN7C-N7-C9	106.2 (5)	HN5A-N5-Cd	107.4 (9)
HN5B-N5-Cd	111.1 (4)	HN5C-N5-Cd	116.7 (10)
H10A-C10-C8	109.0 (23)	H10B-C10-C8	111.7 (18)
HN5B-N5-HN5A	94.8 (22)	HN5C-N5-HN5A	102.7 (17)
HN5C-N5-HN5B	120.3(21)	HN7C-N7-HN7B	- 123.9 (15)
$\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	$100 \cdot 0$ (16)	H10C-C10-C8	114.2 (8)
$\mathrm{H} 10 \mathrm{C}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	127.6 (19)	$\mathrm{H} 10 \mathrm{C}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	90.4 (29)

slightly distorted nitrogen octahedron, involving four cyanide N atoms in the basal plane, and N (pyridine) and N (ammonia) in apical positions. The $\mathrm{Cd}-\mathrm{N}-\mathrm{C}-\mathrm{Ni}$ sequence of atoms is bent, especially at N ($\mathrm{Cd}-$ $\mathrm{N}-\mathrm{C} \simeq 150^{\circ}$), and this is primarily responsible for the corrugated appearance of the networks observed along c. Similar corrugated layers are also reported in some other related compounds (Rayner \& Powell, 1952; Ülkü, 1975; Büyükgüngör \& Ülkü, 1987), though they

Fig. 2. An ORTEP (Johnson, 1976) drawing of the title molecule with the atom-numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.
all have different unit-cell symmetry. The bond lengths and angles (Table 3) agree with those observed in related compounds.

The authors are grateful to Professor C. Krüger and his colleagues of Max-Planck Institüt für Kohlenforschung, Mülheim, Federal Republic of Germany, for provision of laboratory facilities and for helpful discussions. This work was partially supported by the Scientific and Technical Research Council of Turkey (TBAG-701).

References

BüYÜKgüngör, O. \& Ülkü, D. (1987). Acta Cryst. C43, 241-243.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Morehouse, R. L., Aytaç, K. \& Ülkü, D. (1977). Z. Kristallogr. 145, 157-160.
Rayner, J. H. \& Powell, H. M. (1952). J. Chem. Soc. 42, 319-328.
Sheldrick, G. M. (1984). SHELXS84. Program for the automatic solution of crystal structures. Univ. of Göttingen, Federal Republic of Germany.
ÜLKÜ, D. (1975). Z. Kristallogr. 142, 271-280.

